martes, 9 de agosto de 2011

Reseña histórica del Calculo Diferencial


Reseña histórica del Calculo Diferencial
En el siglo XVII las ideas científicas se abrieron con gran intensidad. Gassendi (1592-1655) introdujo de nuevo una forma de la teoría atomista de Leucipo y Demócrito. Grimaldi (1618-1663) y después Newton obtuvieron resultados en la óptica y en el esclarecimiento de la naturaleza de la luz. Huygens hizo una descripción matemática de un funcionamiento ondulatorio de la luz. Torricelli (1608-1647), discípulo de Galileo, inventó el barómetro descubriendo la presión atmosférica y también el "vacío''. Es el siglo de Boyle con sus resultados sobre el vacío y la teoría de gases; también de Hooke, a quien se le atribuye haber sido el principal físico experimental antes de Faraday. Los resultados y las figuras científicas del XVII pueden seguir enumerándose pero, sin duda, es la obra de Newton la que culmina la llamada Revolución Científica.
La teoría newtoniana de la gravitación universal completó la destrucción del modelo cosmológico anterior. Con Newton, efectivamente, puede considerarse que una fase intelectual fue completada. En las etapas históricas siguientes nuevos saltos cualitativos hacia adelante en la ciencia van a demandar más condiciones económicas, técnicas, políticas y sociales.
El Cálculo
Newton construyó el Cálculo entre 1665 y 1666 mientras Leibniz lo hizo entre 1773 y 1776, pero fue Leibniz quien publicó primero sus resultados entre 1684 y 1686 y, luego, lo hizo Newton entre 1704 y 1736. Ambos hicieron sus contribuciones de manera independiente y con características propias, sin embargo se dio una polémica muy famosa, que duró décadas, sobre quién lo había encontrado primero.
Con el Cálculo se resolvieron problemas fundamentales que implicaban el uso de un concepto central: el límite. Tanto Newton como Leibniz usaron esta noción pero lo hicieron de una manera más bien intuitiva, física o geométrica. Una formulación más precisa y rigurosa tendría que esperar más de un siglo en la historia de las matemáticas.
Para el cálculo de áreas se retomó el espíritu del método de exhausción con aproximaciones al área por medio de figuras geométricas representadas analíticamente; los rectángulos sustituyeron los triángulos (o polígonos compuestos por triángulos) que se usaron anteriormente. El concepto de la integral posee su origen en estos objetivos. Debe subrayarse la existencia de una íntima relación entre Geometría Analítica y Cálculo. Aunque el cálculo de áreas, longitudes y volúmenes ocupó una historia más larga en las matemáticas, el cálculo de la tangente a una curva (planteado en el siglo XVII) fue decisivo y determinante para el desarrollo de los métodos El cálculo de la recta tangente y el de la velocidad instantánea se redujeron al cálculo de la derivada, lo que hoy reconocemos como un tipo particular de límite. Newton, incluso, consideró sus derivadas como velocidades. No podemos dejar de mencionar que la relación complementaria o inversa entre los procesos de la derivación y la integración fue uno de los resultados más interesantes y sorprendentes de esta temática.

No hay comentarios:

Publicar un comentario en la entrada